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Abstract. Some trajeaories of the standard map with twist appear to be 'nearly straight 
lines'. In order to understand the cause of this appearance, B two-dimensional Hamiltonian 
function with rotational symmetry deived from the map has been studied. For three., four- 
or six-fold symmetry, the plane is tiled periodically by sets of parallel straight line energy 
contours joining the hyperbolic fixed points. For other rotational symmetries, periodic 
tiling of the plane is not possible, but in some cases there is a strong appearance of 
quasi-periodic tiling by energy contours, corresponding to nearly straight line trajectories 
o f  the map. Such energy contours are associated with straight lines along which the variance 
ofthe Hamiltonian is a local minimum. For five- and eight-foldrymmetrythe local minimum 
value of  the variance along such lines decreases quadratically with perpendicular distance 
from the origin. For seven-fold symmetry, it appears to vary approximately inversely with 
distance from the origin. With these rotations, energy contours can be found which are as 
close 10 straight lines as we please and which correspond to nearly straight line trajectories 
o f  the standard map with twist. 

1. Introduction 

The mapping M, defined by 

x , + , = ( x , + k s i n y . ) c o s ( 2 ~ / 9 ) + y ,  s i n ( 2 ~ / q )  (10) 

y.+,=-(x.+ksiny,)sin(2.rr/q)+y, cos(2ajq) ( 1 b )  

is known as the standard map with twist (Sagdeev et ol 1988), k is called the nonlinear 
parameter. The properties of this mapping are most interesting near resonance, i.e. 
when the rotation number 9 is an integer. 

In the limit of small values of k, the 9th iteration of the mapping, i.e. ( M J ,  is 
approximately the identity. The mapping M, generates 9 symmetrically related images, 
which are traversed at a rate proportional to k. These sets of points are known as the 
phase trajectories of the map. 

If the rotation number 9 is 'crystallographic' (9 = 3, 4 or 6 ) ,  and the parameter k 
is not too large, then orbits of this mapping generate points that lie close to the lines 
of a periodic tiling of the plane. 

The smaller the value of k, the more nearly do certain trajectories tile the plane; 
in the limit k + 0 the tiling is truly periodic. This tiling is manifested by straight line 
trajectories which divide the plane into squares ( 9  =4) or into a pattern of triangles 
and hexagons (cf figure 1) (9  = 3 and 9 = 6). 
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Figure 1. Energy confours of the function %, at Hamiltonian values -1  and +2. The energy 
MntOUc at -i consists o i  straight iines connecting the saddle points and forms a periodic 
net tiling the plane. (The energy contours of Xe are similar: multiply the values of the 
Hamiltonian Z, by 2.) 

For all values of the rotation number q other than the crystallographic values it is 
well known that periodic tiling of the plane is not possible. However even for non- 
crystallographic values of q, the mapping M, does generate some trajectories which 
appear to be very nearly straight lines (see Chemikov et a1 1987a and cf figures 3-6 of 
this paper). As k decreases the 'nearly straight line' trajectories become better and 
better defined, but even in the limit k = 0 they are not straight lines. 

For large values of k the mapping no longer generates well-defined trajectories: as 
k increases the trajectories develop into a stochastic web (Chernikov et a1 1987a). We 
are here restricting attention to small values of k, indeed to what happens when k =0, 
and shall not further discuss what happens for large values of k. 

Direct examination of the trajectories of the mapping, while yielding attractive 
displays on the monitor of a microcomputer, did not yield much insight into why some 
trajectories in the non-crystallographic cases appeared to be almost straight lines. Such 
a direct examination was unhelpful in  solving this problem, and was also very time 
consuming for small values of k. 

As shown in appendix A phase trajectories of the mapping (M,)" correspond to 
energy contours of the Hamiltonian function: 

q-1 

P-0 
X+(x, p) = cos{y cos(2xp/q) - x sin(2.rrp/q)}. (2) 

The period q points of the mapping M, correspond to the stationary points of this 
Hamiltonian function; extrema of the Hamiltonian correspond to elliptic points, and 
saddle points to hyperbolic points. In  this paper we shall be particularly concerned 
with hyperbolic fixed points and the associated trajectories and contours. 

~ A ~ hyperho!ic ~. point has (usu~!!~)  !wo incoming and two outgoing !r&!ctndeS: These 
trajectories separate the plane into unconnected regions and are called separatrices: 
they correspond to energy contours through saddle points. 
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A merit of studying the Hamiltonian (equation (2)) rather than the mapping 
(equation (1)) in the limit of small nonlinearity is that the time to complete a typical 
orbit of the mapping is inversely proportional to the magnitude of the nonlinear 
parameter k. This is compounded by the extremely long time taken to complete an 
orbit close to a separatrix. (To complete a separatrix orbit takes an infinite time: the 
rate at which a hyperbolic fixed point is approached is vanishingly small.) Plotting a 
contour is not affected by the rate at which the corresponding trajectory is generated. 

2. Tiling of the plane 

Figures 1 and 2 show energy contours of X ,  and 4lr, passing through saddle points. 
The plane is tiled periodically by these straight lines, which are separatrices of the 
mappings M3 and M4 in the limit k+O. 

. 6. 

Figure 2. Energy contours of aP, at 0 and +3. The energy contour at 0 consists of straight 
lines connecting the saddle points, and forms a periodic net tiling the plane. 

A periodic tiling of the plane can have two-, three., four- or six-fold symmetry: we 
refer to these as crystallographic symmetries. When q has any other (integer) value, a 
periodic tiling of the plane is not possible. However if we examine the energy contours 
of X 5 ,  2, or X8 (figures 3-6) we find many centres of approximate local symmetry 
reminiscent of quasiperiodic tilings. 

Chernikov et al (1987a) have remarked on the similarity between the mapping with 
twist and the structure of so-called 'quasicrystals'. There have been reports of materials 
appearing to display five-fold 'crystalline' symmetry (Schechtman er a/  1984). The 
quasiperiodic tilings are two-dimensional cuts of higher dimensional periodic functions 
(Bak 1985). 

In a crystallographic case, when the Hamiltonian has three-, four- or six-fold 
symmetry the saddle points are related by symmetry and all have the same energy: the 
net of separatrices is continuous and the separatrices are infinitely long straight lines. 
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Figure 3. Energy contours of ?& at Hamiltonian 0.96. Note that all the CUNCS lie at a 
single value, which is close to the peak value in the density of states. I t  can be seen that 
Some of the contours appear to 'almost lie on a Etmight line', e.g. the line near y =  106, 
and the other lines at the same distance from the origin: along these lines the variance of 
the Hamiltonian is 2 . 8 ~  

Figure 4. Energy contours of 8e, at a Hamiltonian value 0. As in figurer 3, all the C U N ~ S  

lie at a single value, close to the peak in the density of states. Again. certain contours 
appear to 'lie almost an a straight line'. In the figure there are three sets of lines each a 
factor of 2.414.. .farther from the origin, on which the variance of the Hamiltonian is 
particularly small (see table 2). 

In the non-crystallographic cases (all other values of q ) ,  there is no symmetry 
relating all the saddle points: the value of the energy at saddle points is distributed 
over a range (as can be shown by density of states calculations, Chernikov et ol 1987b). 
There is no continuous net of separatrices joining all the hyperbolic fixed points, and 
the separatrices are not straight lines. 
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Figure 5. Energy contours of 2, at a Hamiltonian value -0.99, close to the peak in the 
density of stater. In comparison with figures 3 and 4, the apparent ‘straight lines’ are less 
marked. 

656. 66.. 66.. 6,  ‘52. 

Figure 6. Energy contours of Z, at a Hamiltonian value -0.99, close to the peak in the 
density of states. In comparison with figure 5, the pair of intersecting ‘quasi straight line’ 
contours pasing through the point (6650.0) is considerably more evident. Along these lines 
the variance of the Hamiltonian is 9.21 x (see table 3).  

It has been suggested (Chernikov et a /  1987a) that the separatrices of M5 are fractal: 
it is true that there is some degree of self-similarity over a range of scales, but there 
is a minimum scale length (of a few units) corresponding to the spacing of the saddle 
points: at distances less than this, the structure of the phase trajectories (energy 
contours) is smooth and uninteresting. 

To study the patterns produced by the non-crystallographic mappings M,,  M7 and 
ME we have investigated the variance of the corresponding Hamiltonian function along 
straight lines in the plane. 



3460 P H Borcherds and G P McCauley 

It is straightforward to derive analytic expressions for the variance u9 of the 
Hamiltonian Xq along an infinitely long straight line: along a general line the variance 
is constant (and equal to q or to q / 2 ,  depending upon whether q is even or odd); 
however, along lines making an angle which is a multiple of ? r / q  to the x-axis, the 
variance depends strongly (and quasiperiodically) on the distance of such a line from 
the origin. 

In the crystallographic cases the minimum variance along such a special straight 
line can be zero: the lines are energy contours, as we already know. 

In the non-crystallographic cases, the variance along a straight line can never 
actually be zero, but in certain cases it is possible to find lines along which the variance 
is as small as we please. 

In the three cases, q = 5 ,  7 and 8, it is easy to find lines along which the variance 
is small, as can be seen in figures 3-6. Indeed for q = 5 and q = 8, as we shall see in 
the next sections, there are analytic results showing that successive least minima of 
the variance fall off inversely with the square of the distance of the line from the origin. 
For q = 7, successive least minima of the variance appear to fall off more slowly with 
distance, perhaps linearly, but the relation appears to be ‘stochastic’ (see figure 7). 

When the rotational symmetry q has a value greater than those discussed here, the 
least value of the variance along a straight line does not appear to approach zero. 

\ *  
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\ +  
1 \ +  
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Figure 7. Logarithmic plot showing successive least minima in the variance of 2, along 
straight lines platted against the distance of the line from the origin. 

3. Minimal variance of Ytq 

The variance of X9 along a general line in the plane is constant, but along certain 
symmetry related lines, the variance depends upon the distance of those lines from 
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the origin. It is necessary to distinguish three types of behaviour, depending upon the 
value of 9. 

( a )  q odd. The minima lie on lines parallel to the x-axis (and along lines at an 
angle which is a multiple of r/q to the x-axis). 

(b) q = (4n +2). In this case, the Hamiltonian is just double that for 9 = 2n + 1, 
i.e. %4.+,=2X2.+,. 

( c )  q = 4n. The minima lie on lines which make an angle equal to an odd multiple 
of r!? to the x-axis. 

When the distance from the origin of a line with appropriate slope is an odd 
multiple of r (independent of the value of q) ,  the variance of the Hamiltonian along 
it is a maximum. 

4. Five-fold symmetry 

The variance of the Hamiltonian Xs along the line y = d is given by 

us(d )  = 2+f  E cos(2d cos(Z?rp/5)) 
$7-1 

where 4 = (1 +&)/2= 1.618.. . , the golden ratio. 
When d is a multiple of r, equation (3) simplifies to 

u , ( n r )  =2+(1+(-1)")  cos(nr /+) .  (4) 

When n is odd, the variance is equal to 2, exactly. When n is even 

u s ( 2 n r )  =2(1 +cos(2n?r/+)) ( 5 )  

and this will be small if ( 2 n 7 r / + )  is approximately equal to an odd multiple of r, 
say, ( 2 k + l ) r .  Thus we expect to find small minima when we have good integer 
approximations to the value of $, in the form 2n/(2k+l) .  

It is a well known result in number theory (Hardy and Wright, 1954) that the best 
rational approximations (convergents) to any number are obtained from its continued 
fraction expansion. The convergents to + are given by the ratio of sucessive terms of 
the Fibonacci series. The requirement that the numerator be even limits us to every 
third term in the Fibonacci series. The agreement between our prediction and observa- 
tion is shown in table 1. From the general theory of continued fractions it is known 
also that the difference between a quantity and its convergent is less than the square 

Table 1. Successive least minima of U, 

Fibonacci 
Distance Variance Distance/= Distance/ mP numbers (Variance) x (distance)' 

1 0 1  1 . O L  1.12 [2, !! 2.97 i .1,m, nn", 
,.,,L, "."I, 

25.263 5.1 E - 3  8.04 4.97 [E, 51 3.25 
106.78 2.8 E - 4  33.99 21.01 [34,211 3.24 
452.40 1 .6E-5  144.00 89.00 r144.891 3.22 

1916.4 8.8 E - 7  610.00 377.00 r609.3771 3.23 
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of the denominator of the rational fraction. Applying this we find that the variance 
should fall off with the square of the distance of the line from the origin. This is indeed 
observed, as can be seen from the final column of table 1. 

Each successive ‘least minimum’ occurs on a line which is approximately @ 3  farther 
from the origin than its predecessor, while the value of the variance falls by a factor 
b6 at each step. Thus we can predict where to look for a line on which the variance 
is arbitrarily small. 

P H Borcherds and G P McCauley 

5. Eight-fold symmetry 

The variance of the Hamiltonian X8 along a line lying at an angle w / S  to the x axis, 
and a distance d from the origin is given by 

u d d )  = 8 + 4 [ c o s { d m }  + c o s { d ~ ) ] .  ( 6 )  

The condition for a minimum is that the arguments of each of the cosines be close 
to an odd multiple of rr. This can be shown to be equivalent to finding rational 
convergents to (A+ 1). As in the case of five-fold symmetry, the least variance falls 
off quadratically with distance, although at a given distance, the absolute value of the 
least minimum is greater for ug than for us ,  as can be seen by comparing the final 
columns of tables 1 and 2. 

Table 2. Successive least minima of u8 

Distance Variance (Variance) x (Distance)‘ 

11.951 0.170 24.305 
28.883 0.029 24,466 
69.718 5.03 E - 3  24.476 

168.32 8.63 E - 4  24.397 
406.35 1.48 E - 4  24.480 
981.025 2.54 E - 5 24.489 

Each successive least minimum occurs approximately (1 +A) times farther from 
the origin than the previous one. 

In each of the five- and eight-fold symmetries, the condition for a minimum variance 
depends upon two irrational quantities being simultaneously approximated by a rota- 
tional fraction as seen in equations (3) and (6). In both cases this requirement can be 
further simplified (using trigonometric identities) to finding a good rational approxima- 
tion for a single irrational number. It is this simplification that leads to the quadratic 
rate of fall in the variance. Moreover in both cases the irrational number in question 
is the root of a quadratic, so the successive denominators satisfy a linear two-term 
recurrence relation. Hence the successive least minima occur regularly. 

This does not pertain for any other symmetry, so it is unlikely that a similar 
dependence of least successive variance on distance will be found at any higher values 
of q. 
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6. Seven-fold symmetry 

The variance of the Hamiltonian Z, along the line y = d is 

3463 

3 

p = l  
u7(d)=3+ cos(2d c o s ( p ~ l 7 ) ) .  (7) 

In contrast to the previous cases, it is now necessary to find rational approximations, 
all with the same denominator, to the three irrational quantities, cos(?r/7), c o s ( 2 ~ / 7 )  
and cos(3?r/7). It is not possible to reduce this requirement to the finding of a single 
good approximation. The results of a systematic computer search for such approxima- 
tions are shown in table 3. Numerical verification of these results, using single precision 
arithmetic (4 or 5 bytes) is possible for values of distance up  to about 30 000; to go 
farther requires the use of multiple precision arithmetic. 

Table 3. Successive least minima of U,. 

Distance Variance Distancei(al2) 

8.3004 
22.612 
78.313 

148.33 
204.04 
430.69 
713.04 

6 487.4 
59021.1 

536 964.2 
2472 116.1 
2 950 059.2 
4885211.1 

155288469 
204 618 523 

0.817 
0.205 
0.111 
0.106 
5 .03E-2  
1.73 E - 2  
5.03 E-3  
9.21 E - 4  
2.78 E-5 
8.74E-6 
8.01 E-6  
4.27 E-6  
1.87 E-7 
1.64 E-7 
5.70 E - 8  

14 
50 
94  

130 
274 
454 

4 130 
37 574 
31 842 

1573 798 
1878 066 
3110022 

98 859 710 
130264 198 

The quantity (distance/(?r/Z)) is very close to an integer in each case in table 3, 
and is the common denominator in the three rational approximations to the three 
cosines. 

The data of table 3 are plotted on logarithmic scales in figure 7. The straight line 
satisfies the equation 

variance = l/distance, 

The points lie close to this line: only one point lies below it, but it would be rash to. 
attempt to fit a line to the data: all that can be said is that for q = 7 the least successive 
variance appears to fall off almost linearly with distance, rather than quadratically as 
found for q = 5 and q = 8. 

Examination of the data of table 3 has not shown any regularities among successive 
least minima, other than that all three rational fractions are of the form (2j + 1)/(4k +2): 
this observation considerably speeded up  the search for minima. 

The least successive minima appear to fall off linearly with distance, but there is 
no obvious pattern. We have carried out a computer search for successive least minima 
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to a distance of 2 x 10': further searching is likely to be require excessive amounts of 
computer time, since there appears to be about one new least minimum per decade. 

Extending table 3 to greater values of distance is very time-consuming: the search 
using FORTRAN on an Archimedes advances at  a rate of about 10' per day: even on a 
supercomputer the rate would be at best a very few decades higher, and it would be 
difficult to leave a supercomputer running the program for an entire week, as one can 
do with a microcomputer. 

In an attempt to find some pattern among the convergents to Cos(7i/7), cos(27i/7) 
and cos(3?r/7) we have looked also at the continued fraction convergents of the three 
cosines separately, to see if there was any tendency for terms with equal denominators 
to appear. The only finding was that certain numbers appeared as the numerator of 
one fraction and as the denominator of another (in a cyclic sense), but no pattern was 
apparent. Note that the three cosine terms are the roots of a cubic equation. The 
regularity in spacing associated with the earlier quadratic cases does not apply. 

P H Borcherds and G P McCauley 

1. Conclusions 

Some of the trajectories generated by the standard map with twist appear to be nearly 
straight lines even in non-crystallographic cases. The mapping can be derived from a 
narmiiunian dl in me  mmi U, siiiaii rrununcaniy. 

The Hamiltonian Xq generates crystallographic tilings of the plane when 9 is equal 
to a crystallographic value (3,4,6). For other values of q a crystallographic tiling is 
not possible, but in two cases (9  = 5 and 9 = 8) and possibly in a third case (9 = 7) we 
find straight lines which can approximate energy contours as closely as we please. The 
cases of 9 = 5 and 9 = 8 are distinguished by the fact that they each involve rational 
appreximatinns fer z sing!e (quadrztic) irraticna!. 

The existence of these straight lines along which the variance of the energy is very 
small explains the strong appearance of 'nearly straight line' trajectories in the standard 
map with twist. 

.r.-:..._:._ I- .L. ,:-:A .r .--11 ,: _... :. .. 

Appendix A. The derivation of a Hamiltonian from the standard map with twist 

The map M, when applied 9 times is approximately the identity in the limit k + O .  
The qth iteration of the map, to first order in k, is 

q - I  
x + x + k  1 cos(2?rp/q) sin(-x cos(2?rp/q)+y sin(2?rp/q)} 

q - I  
y + y + k  1 sin(2?rp/q) sin{-x cos(2?rp/q)+y sin(Zmp/q)) 

p=n 

so the limiting form of the invariant curves comes from the flow 

where Be is the Hamiltonian Beq defined in equation (2). 
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